飞速赛车游戏下载

镇店之宝

行业企业市场标准科技新品会议展会政策原创

中科院沈自所在智能电网优化调度领域取得进展

仪表下游 2019年09月05日 14:19:14 来源:中科院沈阳自动化研究所人气:2704
  【仪表网 仪表下游】近日,中国科学院沈阳自动化研究所智能微电网课题组在智能电网优化调度领域取得进展,相关成果获智能电网领域顶级期刊IEEE TRANSACTIONS ON SMART GRID刊载。
 
深度递归神经网络
 
考虑潮流安全约束的微电网结构图
 
基于深度神经网络与浅层网络的近似最优价值函数
 
  随着全球气候变化及环境污染问题的日益加重,电力系统的清洁性、安全性和可持续性越来越受到世界各国重视。发展大规模分布式可再生清洁能源,利用先进的智能优化和控制技术,加速传统电力系统向更清洁、更安全和更可持续性的智能电网转变,是未来电力系统的发展趋势和新兴研究热点。目前,国内外在可再生能源的接入、暂态稳定性控制、以及电网运行的经济性等方面的研究已取得重大进展,然而对于接入高比例可再生能源的电力系统,其运行的安全性及相关的智能优化调度方法仍有待突破。
 
  在题为Dynamic Energy Management of a Microgrid using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning的研究论文中,智能微电网课题组在国际上首次提出了一种基于深度强化学习技术的微电网实时能源优化方法。该方法考虑可再生能源出力的随机性及其对电网交流潮流约束的影响,利用一个深度递归神经网络对微电网当前运行状态进行特征提取,并在保证微电网安全性的基础上,对微电网各分布式发电单元进行调度,实现微电网运行的实时优化控制。此外,相对于目前的微电网运行控制方法,提出的方法完全是基于学习的,不需要对可再生能源出力进行预测建模,表现出很好的自适应性。该工作不仅是智能电网优化调度研究中新的探索和突破,也为未来应用人工智能技术推动智能电网发展提供了新的研究思路。
 
  (原文标题 :沈自所在智能电网优化调度领域取得进展)
关注本网官方微信 随时阅专业资讯
仪表站APP 让生意更简单
@仪表网

全年征稿 / 资讯合作

联系邮箱:ybzhan@QQ。com

我要评论

飞速赛车游戏下载 所有评论仅代表网友意见,与本站立场无关。

  • 凡本网注明"来源:仪表网"的所有作品,版权均属于仪表网,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明"来源:仪表网"。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。
  • 合作、投稿、转载授权等相关事宜,请联系本网。联系电话:0571-87759945,QQ:1103027433。
成丰仪表——中国第三代流量计领军品牌


返回飞速赛车游戏下载
美国dwyer
关闭
北京赛车 欢乐生肖网上哪里买 欢乐生肖网上投注 欢乐生肖玩法 荣鼎彩 欢乐生肖官方网站 皇冠手机网址 快乐时时彩 极速快三 极速快三